DEQ Mercury Benefit-Cost Study: An update

Vijay Satyal – DEQ Air and Policy Division
Virginia Mercury Symposium

Virginia GAB request to DEQ

- > H 1055/ SB 651 -
 - evaluate state of <u>existing</u> mercury control technologies
 - technical and economic feasibility of additional controls
 - Assessment of mercury reductions and related benefits

GAB request – complex, multi-media and twopronged (CAIR and CAMR)

Purpose & approach

- > Symposium -
- Key purpose of study assess costs versus benefits (damages) of existing mercury control technologies – coal fired power plants only
- Intensive research on approach to adopt
- Many states adopted unique approaches (inhouse, external, broad stroke analysis)
- This study is collaborative and rigorous comparing typical calculations with dynamic modeled scenarios (firm specific)

Stepping back – other states

- MN, WV, NJ, IL, PA, LA and others... conducted cost-benefit studies
- ➤ NC, GA, TX and many others...gearing up
- DEQ study to include summary of select states efforts and related assessments
- ➤ Each state is unique in issues, regulatory response and approach/ data used a typical dilemma
- > Quick snapshot IL, MN and W

Other states - Illinois specific CAMR

- ▶ IL (ICF contracted w IPM custom-fitting): Hg reduction by 15% in 2015 – costs of production increase 2% in 1st year, then fall (learning by doing), revenue marginally affected.
- CAMR adoption retail electricity prices and other expenses: + 1-3.5%, net increase in residential bill: \$0.75 -1.50
- Benefit analysis human health study?

Minnesota's net benefit study

- > Scenarios used:
 - 50% less -MN Hg emissions
 - 50% less- Midwest emissions (12.5% MN)
 - 50% less- US emissions
 - 50% less- worldwide emissions
- WTP Willingness to Pay approach predictive human behavior modeling (mail and personal interviews): Use and non use value, caveats
- Procedure endorsed by DOI, NOAA, (RFF!)
- > 12.5% scenario benefit analyses

Findings – MN, WVA

- Minnesotans willing to pay \$118 for baseline - 12.5% - reduction in Hg
- Averaging across state: \$ 0.12/person/day
- > Key caveat: stated often differs from actual
- West Virginia Brush stroke analysis (time)
- Costs higher for plants smaller than 400MW
- > EPA cross-over: 500MW. Capital costschange around the cross-over.

West VA findings: FDG + SCR

- Capital costs per EPA model runs: \$493 / kw (150 MW plant)
- Capital costs EPRI IEC Cost runs: \$576 / kw
- > O/M costs similar in trend
- > Adopting federal cap-trade rule
- Source: Kenna Amos WVA DAQ

Challenges to keep in mind

- Data relevancy, accuracy and validation
- Using Virginia specific coals analyses
- Two pronged question balancing cobenefits
- Two differing perspectives:
 - Positive –Cannot ignore co-benefits, balance at the margin
 - Normative / equity supporting rationale focus on absolutes / now and beyond (regulator's situation)

Benefit – Cost analysis

- Standard approach used since Reagan administration (regulatory efficiency)
- Over time commonly used approach, also sometimes misused
- More appropriate a tool for: anthropogenic effects, assessing policy scenarios, or best, *informing* policy options
- > Requires good data

DEQ approach

- Net benefits versus costs
 - 1. Baseline CAIR
 - 2. If CAMR adds onto CAIR (additional CAMR specific controls)
 - 3. Try to net out additional CAMR specific investments evaluate its impact (marginal costs of CAMR)
- Cost-effectiveness: assess net present value costs over a 30 yr timeline
- Benefit assessment Human Health Risk Assessment – VCU study
- Quantify and monetize actual versus potential levels of risk: benefits analysis complete.

Study – Work in progress

- Unbiased and realistic (co-benefits +/-)
- Evaluating use of IECM and CueCost
- Evaluating all studies possibly done
- Working to ensure firm specific contextual data, pro-bono inputs from NCSU – Chris Frey, VT and also tapping into existing DEQ resources and data
- Expected completion Late Summer 08